#### PhD Proposal and Monitoring

#### ${\rm L{\sc i}}$ Yuanyuan

European Doctorate in Economics - Erasmus Mundus (EDE-EM)

EDE-EM Winter meeting, Lisbon

Feb. 10, 2012

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

# Introduction

- Name: Yuanyuan LI
- Education: B.S. in Applied Mathematics, 2007; Master in Economics, 2009; Master in QEM, 2011.
- Advisors: Prof. Bernhard Eckwert Prof. Bertrand Wigniolle
- Mobility Track: Bielefeld Paris Bielefeld.
- Proposed Title:

Information and the Dispersion of Posterior Distributions

< A >

# Uncertainty and Information

- Imperfect knowledge and uncertainty (returns of investment, workers' skill, exchange rate, ...)
- Availability of information (purchasing, expert's advice, monitoring,...) → reduce the uncertainty.
- Timing of events



• Decision making based on posterior distributions.

#### How do different signals affect the posterior distribution?

- $\bullet~\mbox{More}$  useful info.  $\rightarrow~\mbox{larger}$  impact  $\rightarrow~\mbox{more}$  sensitive actions
- Extremely, fully uninformative  $\longrightarrow$  posteriors  $\sim$  priors  $\longrightarrow$  conditional expectation = unconditional expectation.



# Information Structure and Revision of Beliefs

- The triplet  $(\Omega, Y, F)$  is defined as an information structure.
  - $\Omega$  is the set of unknown states;
  - Y is the set of signals;
  - *F* is a stochastic transformation from  $\Omega$  to *Y*, represented by the conditional density functions  $f(y|\omega)$ .
- For a given prior  $\pi(\cdot)$ , agents can obtain the **updated beliefs** via Bayes' Rule:

$$u(\omega|y) = rac{f(y|\omega)\pi(\omega)}{\mu(y)}, \quad orall \omega \in \Omega, orall y \in Y.$$

where  $\mu(y) = \int_{\Omega} f(y|\omega') \pi(\omega') d\omega'$ .

• Making decisions based on the posterior distribution.

# Informativeness and Dispersion Criteria

- Ordering of information structures
  - Blackwell's informativeness(1953) the value of information
  - Lehmann's effectiveness(1988) conditional distribution
  - Kim's MPS criterion(1995) likelihood ratio distribution
- Precision criteria (Ganuza & Penalva, 2010)
  - A signal ỹ<sup>F</sup> from (Ω, Y, F) is more supermodular precise than the signal ỹ<sup>G</sup> from (Ω, Y, G) if E[ũ|ỹ<sup>F</sup>] is greater in the dispersive order than E[ũ|ỹ<sup>G</sup>].

 $(E[\tilde{\omega}|\tilde{y}^{F}]$  has a broader support than  $E[\tilde{\omega}|\tilde{y}^{G}]$ .)

• Precision based on other stochastic orders (e.g.: convex order).

< ロト < 同ト < 三ト <

## Dispersion of conditional Expectations

- Transformation of signals: z = F(y), uniformly distributed.
- $\tilde{y}^{F}$  is more supermodular precise than  $\tilde{y}^{G}$  if

$$E^{\mathsf{F}}[\tilde{\omega}|z'] - E^{\mathsf{F}}[\tilde{\omega}|z] \ge E^{\mathsf{G}}[\tilde{\omega}|z'] - E^{\mathsf{G}}[\tilde{\omega}|z]$$

for any  $z, z' \in (0, 1)$  such that z' > z.

That is,  $\Delta E(z) := E^F[\tilde{\omega}|z] - E^G[\tilde{\omega}|z]$  is non-decreasing in z.

- Precision  $\longleftrightarrow$  Sensitivity of  $E[\tilde{\omega}|\tilde{y}]$  to signal realizations
- Problems:
  - unclear relationship between information structures.
  - not invariant to relabelling.

イロト イポト イヨト イヨト

## Any link between Informativeness and Dispersion?

- Is there any relationship between informativeness criteria and dispersion criteria?
- How to characterize the dispersion criteria based on information structures?
- A Binary Example:  $\Omega = \{\omega_L, \omega_H\}, Y = \{y_L, y_H\},\$ and two info. structures  $(\Omega, Y, F^p)$  and  $(\Omega, Y, F^q)$ , where

$$\mathcal{F}^p=egin{pmatrix} 1-p_1&p_1\p_2&1-p_2\end{pmatrix}$$
 and  $\mathcal{F}^q=egin{pmatrix} 1-q_1&q_1\q_2&1-q_2\end{pmatrix}$ 

with  $p_1 + p_2 \le 1$  and  $q_1 + q_2 \le 1$ .

Informativeness in Blackwell's sense  $\implies$  Dispersion of conditional expectations.

# Methodology and Expected Outcomes

#### Methodology

- Probability theory and mathematical statistics
- Dynamic equilibrium theory
- Expected Outcomes
  - Establish the relationship between informativeness and dispersion criteria.
  - Form Characterizations of dispersion criteria.
  - Applications on financial market theory based on dispersion criteria (market transparency and financing probabilities, expected returns, market (in)stability, etc.)

< A >

## **Progress and Plans**

- Courses:
  - S1: Econometrics, Labour Economics with Search Frictions;
  - S2: Stochastic Orders and Applications, Information Economics Seminar.
- Research Seminars: Economics Seminar, BiGSEM Colloquium.
- Language Course: German
- Attending the 6th EBIM Workshop and the 10th anniversary of BiGSEM.
- Research Work (in progress): Informativeness and Dispersion in discrete cases.

Introduction PhD Proposal Winter Monitoring

#### The end...

# Thank you for your attention.

LI Yuanyuan PhD Proposal and Monitoring

A 10

∃ >